
PATENTS, REAL OPTIONS AND FIRM PERFORMANCE*
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Analysing the new IFS-Leverhulme database on over 200 major British ®rms since 1968 we show
that patents have an economically and statistically signi®cant impact on ®rm-level productivity
and market value. While patenting feeds into market values immediately it appears to have a
slower effect on productivity. This generates valuable real options because patents provide
exclusive rights to develop new innovations, enabling ®rms to delay investments. Higher
market uncertainty, which increases the value of real options, reduces the impact of new
patents on productivity. If the government's policy to reduce uncertainty is successful then this
should increase the productivity of Britain's knowledge capital.

There is a consensus that technological advance is crucial for economic per-
formance, but measuring technology has always been one of the most per-
plexing problems facing empirical economics. One tradition, epitomised by
Solow (1957), is to measure technology as a residual from a production func-
tion. The problem is that this residual also contains the measurement error
from the production function estimation, and so provides only an indirect link
to productivity. A second tradition, which this paper follows, is to construct
observable proxies for technical change. The most popular measure of tech-
nology is research and development (R&D) expenditures. Unfortunately at the
®rm level there was no requirement to report R&D expenditures in Britain
before 1989 (even for larger ®rms), so this hampers the generation of a long
time series. Innovation counts have been frequently used in the United King-
dom, but the best series for these ended in 1983 (see Pavitt et al., 1987;
Blundell et al., 1999; Geroski, 1990).

Counts of patents have also been a popular choice to proxy innovation. And
patents themselves contain a wealth of other information (eg Lerner, 2000). In
particular, the front of a patent details other patents which contributed to the
knowledge underlying the new patent. This information can be used in a variety of
different ways. We start off with the most obvious use. A patent which is cited many
times is more likely to be valuable than a patent which is rarely cited (see Griliches,
1990). Other researchers have used patent citations as a Ôpaper ¯ow' to track the
way knowledge spills over between organisations and areas (see Henderson et al.,
1993; Jaffe and Trajtenberg, 1998) and this is a route that we are pursuing in
complementary work.

We look at the impact of patents on two measures of company performance ±
productivity and market value. Production functions are more easily interpretable
and comparable with other work. Market value is a more forward looking measure,
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which has attractions for the analysis of an activity whose pay-off may not be for
many years into the future.1

From our preliminary work with the data it became apparent that while patents
have an immediate impact upon market values they take time to affect produc-
tivity. One potential explanation is that the new products and processes which are
covered by the patents have to be embodied in new capital equipment and
training. Firms may also need to undertake further research and development, as
well as expensive marketing and advertising to promote their new products.2 As
such, this will involve extensive sunk cost investments ± these capital, training,
research and marketing outlays will be (at least partially) irreversible. But since
patents provide ®rms with the exclusive rights to their new technologies they have
the option to wait until making these sunk costs investments. When market con-
ditions are uncertain, this will generate valuable real options. Therefore, by giving
®rms a legally protected right to delay investing, patents provide a test of the
importance of real options.

We adapt the developing real options literature to explain the take up of new
products and processes covered by patents.3 The theories developed in this paper
predict that higher market uncertainty will lead ®rms to be more cautious about
their investments. We use this theory to then derive empirical predictions on the
relationship between patents and uncertainty and empirically test them. This
builds on earlier work valuating patents as options by Pakes (1986), and their
impact on ®rms' stock market values by Pakes (1985).

The structure of this paper is as follows. Section 1 describes the database
that we have constructed and some of its key features. Section 2 sketches some
simple models and the real options extensions that we use to estimate the
effects of patenting on company performance. Section 3 details the econo-
metric results and Section 4 gives some concluding comments. In short, we
®nd considerable evidence of the importance of technology for ®rms' pro-
ductivity and stock market performance. Higher uncertainty, as predicted, re-
duces this effect of patents on productivity but appears to have no signi®cant
effect on market value.

1. Data

We combine three principal datasets in constructing the IFS-Leverhulme database.
Full details of the matching between the datasets is contained in Bloom and Van
Reenen (2001), but we sketch the process here. The ®rst dataset is the Case
Western Patent data (see Trajtenberg et al., 2000), the second is the Datastream

1 There is a small literature emerging on the impact of patents on company performance, such as the
work on United Kingdom ®rms by Blundell et al. (1995), Bosworth, Greenhalgh and Stoneman
Wharton (2000) and Bosworth et al. (2001) and on US ®rms by Hall et al. (2000).

2 Hall et al. (1986) and Blundell et al. (1998) both provide evidence that patents are often applied for
early on in the R&D process, so that further R&D expenditure may be needed to bring the products to
market.

3 See, in particular, Dixit and Pindyck (1994), Eberly and Van Mieghern (1997), and Bloom et al.
(2000).
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annual company accounting data, and the third is the Datastream daily share
returns data.

To construct the patents database we used the computerised records of patents
granted in the United States between 1968 and 1996. This is the largest electronic
patent dataset in the world (the European Patent Of®ce records begin only in
1976, and the records are patchy until the mid 1980s).

The second and third datasets contain the accounts and share returns of
®rms listed on the London Stock Exchange. From the population of public
®rms we selected those whose names began with the letters ÔA' to ÔL', which
represents a random sample from the whole population. We also added in
the top 100 R&D performing ®rms in the United Kingdom that were not
already included in this list to maximise the numbers of patents we could
collect. Ideally we would have collected information on all ®rms on the Stock
Market, but the resource cost was too great. For all of these 415 ®rms we
used ÔWho Owns Whom' from 1985 to ®nd the names of all subsidiaries.4

We then used these subsidiary names to match to the Case Western Dataset
by name.

1.1. Patents and Citation Data

The intersection of the two datasets gave us 236 ®rms who had taken out at
least one patent between 1968 and 1996. The total number of patents taken
out by this group over the entire period was 59,919, representing about 1% of
the 6 million patents ever taken out at the US Patent Of®ce. Table 1 shows
that most of our group of United Kingdom ®rms are involved in a modest
amount of patenting with about half the sample receiving more than 25 pa-
tents, while 12 ®rms received over 1,000 patents during the period. This
concentration of innovative activity within large ®rms (the 12 account for
72% of all patents in our data), re¯ects a similar phenomenon in R&D
expenditure where the 12 largest enterprises account for about 80% of all
R&D expenditure.

The patents are graphed by their year of application in Fig. 1. The lesser
degree of patenting activity in the latter part of the period re¯ects truncation

Table 1

The Distribution of Firms by Total Patents, 1968±1996

1 or more 10 or more 25 or more 100 or more 250 or more 1,000 or more

Firms 236 161 117 75 41 12

4 There are many problems with only using one year of data to match in the corporate structure. The
process of matching is, however, extremely labour-intensive so it was only practical to perform it for one
year. In future work we intend to also do the matching for later and earlier years.
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bias (on the right) because we collect statistics on patents granted. Since there
is a delay between applying for and granting a patent of about two years, this
leads to a downward bias towards the end of the period. There is also a
truncation on the left of the graph as there may have been patents granted
post 1968 which were applied for pre-1968. These caveats apart, there is little
discernible trend in the total patents numbers granted to United Kingdom
®rms.

We also have data on the citations made by any of the other 6 million patents in
the main dataset to our sample of 59,919 patents. Citations can be taken as an
indicator of the technological value of a patent in that those patents which are
frequently cited are likely to be more innovative and technologically productive. In
Fig. 2 we plot the histogram of the lag between a patent being taken out and the
subsequent citations to that patent. It can be seen that citations tend to happen
relatively early on in a patent's life when the patent is widely known but techno-
logically still innovative. Interestingly this citation lag still has not completely tailed
off even after 20 years.

The ®ve most cited patents are tabulated in Table 2 below with their patenting
topic, the year they were granted and the number of cites made to them over the
period 1976 until 1996.

The total number of citations to our patents, dated by the application year of the
patent being cited, is plotted in Fig. 3. Because data on citations are only collected
for patents granted after 1976 there is an early downward bias re¯ecting the fact

Fig. 1. Patents Per Year
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that for patents granted pre 1976 some of the initial citations data are missing. The
discussion in the paragraph above and Fig. 2 suggests that the loss of these early
citations could lead to a serious downward bias for patents taken out pre 1976
since for them this would represent a period of relatively high citation activity.
There is also a tail end bias as patents applied for towards the end of the period will
only be part of the way through their citations lifecycle, and so will have been cited
less often by 1996.

To deal with these biases we use a non-parametric series estimator based on a
full Fourier sine and cosine expansion. We assume that the total lifetime number
of citations per patent per year is constant throughout our sample. Therefore any
observed changed in the observed aggregate citation levels will be due to time

Fig. 2. Lags Between Patenting and Citing

Table 2

The Top Five Cited Patents

Company Patent Topic Grant Year Cites 1976±96

Shell Synthetic resins 1972 221
Grand Metropolitan Microwave heating package 1980 174
ICI Herbicide compositions 1977 130
Unilever Anticalculus composition 1977 97
British Oxygen Corp. Pharmaceutical drugs 1975 89
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varying levels of truncation bias. We also assume that this time varying truncation
bias varies smoothly over time according to some piecewise continuous function of
time.5 Our normalisation estimator then uses a Fourier expansion to ®t a smooth
curve to the observed time variation in aggregate citation levels to non-paramet-
rically estimate a truncation bias function.

A Fourier expansion was used because of its ability to approximate conveniently
to an arbitrary degree of accuracy any piecewise-continuous function (see Chur-
chill and Brown, 1987). The actual number of yearly citations was regressed against
these eight Fourier series terms and the predicted value taken as our normalising
function.6 The smoothing property of our estimator can be seen in Fig. 3 which
plots the actual citation frequency and our non-parametric functional estimator.
This functional estimator of the time varying citation bias is then inverted to

Fig. 3. Actual and Normalised Citations per Year

5 That our observed citation frequency is not smooth over time, even in our sample of almost 60,000
patents, is testament to the extreme skew of the citations data. In datasets such as these which have large
second moments the usual weak convergence of the empirical distributions to their underlying
distribution is extremely slow (see for example Billingsley, 1986), so that smoothing is usually required.

6 Increasing the length of the base period or using the ®rst three or ®ve terms does not have any
signi®cant impact on our results. This is because the ®rst few terms of the Fourier expansion drive the
results, as noted for example, by Bertola and Caballero (1994) in a related application. The procedure
itself is very straightforward, just requiring an OLS regression of the yearly citation frequency against the
Fourier terms: Cos(base), Sin(base), Cos(2�base), Sin(2�base) etc... Further details on implementa-
tion can be found in Kreyszig (1999).
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re-weight the citations per patent. This ensures that the normalised citations per
patents remain approximately constant over the period.

In calculating a patent based proxy for knowledge stocks it is also more
sensible to use a stock measure rather than a ¯ow measure of knowledge as the
bene®ts from a patent are likely to persist into future years. We calculate a set
of preferred measures of the stock of patents through the perpetual inventory
method with a knowledge depreciation rate, d, set to 30% as in, for example,
Cockburn and Griliches (1988). The same perpetual inventory method is used
to calculate the citation stock where the ¯ow variable is the citation weighted
number of patents. The Ô5 year cite stock' uses only the ®rst 5 years of citations
(after an application) to obtain a citation weighting but without any normali-
sation. Since we select our citation estimation period to run up to 1990 only
whilst our citing data run up to 1996 this means we have 5 years of observations
on citations for every patent so that no truncation bias correction will be
needed for this 5 year measure.

It is comforting that our three measures of the knowledge stock ± the patent
stock, the citation weighted patent stock, and the 5 year citation weighted stock ±
have a strong correlation as demonstrated in Table 3. They also have a strong
correlation with R&D expenditure. This suggests that whilst each should have its
own merit in capturing various aspects of the knowledge stock they proxy a similar
measure of the technological innovation stock.

1.2. Firm Level Accounting and Uncertainty Data

The company data are drawn from the Datastream on-line service and represent
the accounts of ®rms listed on the United Kingdom stock market. Our initial
sample of 415 ®rms (those whose names began with A±L or were large R&D
performers)7 for which we matched patent data was then cleaned, leaving a
sample of 404 ®rms, to which 184 were matched as having patenting subsidi-
aries (see Bloom and Van Reenen (2001) for details of this cleaning and
matching process).8

Table 3

Correlations Between Knowledge Stock Measures Normalised by Firm Employment

Pat Stock Cite Stock 5 Year Cite Stock R&D

Patent Stock 1 0.9688 0.9074 0.5001
Cite Stock 1 0.9453 0.4829
5 Year Cite Stock 1 0.4032
R&D ¯ow 1

Notes: All knowledge variables have been size normalised by total ®rm employment. Non-normalised
correlations are all higher. R&D correlations are only for those years in which R&D is reported.

7 See Bloom and van Reenen (2001) for details of this sample selection, cleaning and matching
process.

8 This is less than our group of 236 patenters because of both the loss of some ®rms due to trimming
and the loss of some years of observations for the remaining ®rms due to the unavailability or poor
quality of data on employment in the early 1970s.
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Table 4 reports summary statistics for this set of 184 patenting ®rms. From the
last row of the table it can be seen that we generally have a long time series of data
on each ®rm ± on average over 20 years for each ®rm. The patent numbers
demonstrate the large variation in patenting per ®rm year with some ®rms only
taking out sporadic patents ± as demonstrated by the zero patent observations ±
and others taking out 409 patents in a single year (ICI in 1974). The total cites
number represents the normalised sum of citations for all patents taken out in
each ®rm year.

In measuring uncertainty we have to measure ®rms' uncertainty about future
prices, wages rates, exchange rates, technologies, consumer tastes and govern-
ment policies. In an attempt to capture all factors in one scalar proxy for ®rm
level uncertainty we use the variance of the ®rm's daily stock returns,9 denoted
r2

i . In accordance with the standard assumptions of theories of real options this
is a time invariant but ®rm speci®c proxy for uncertainty. This measure
includes on a daily returns basis the capital gain on the stock, dividend
payments, rights issues, and stock dilutions. Such a returns measure provides a
forward looking proxy for the volatility of the ®rm's environment which is
implicitly weighted in accordance with the impact of these variables on pro®ts.
A stock returns-based measure of uncertainty is also advantageous because the
data are accurately reported at a suf®ciently high frequency to provide an
extremely accurate measure. Our sampling size of 265 recordings per year for
the 22 year life of our average ®rm therefore provides an extremely low
sampling variance.10

Table 4

Descriptive Statistics for the 184 Patenting Firms, 1969±1996

median mean stan. dev. min. max

Real Capital (£m) 144 745 1,778 1.6 18,514
Employment (1000s) 8,279 23,963 41,566 40 312,000
Real Sales (£m) 362 1,224 2,494 1.15 20,980
Real Market Value (£m) 153 740 1,766 0.29 19,468
Patents 3 12.6 34 0 409
Total Citations 13.7 61.2 157 0 1,808
Patent Stock 10 42.6 113 0 1,218
Cite Stock 49.2 202 507 0 5,157
5 Year Cite Stock 26.2 105.9 227 0 2,919
Uncertainty 1.39 1.47 0.42 0.60 6.6
Observations per ®rm 22 20 7.6 3 29

Notes: Capital, sales and market value are all in 1985 million. Patents is the total number of patents
per ®rm year whilst cites is the normalised total number of citations to a ®rm's patents per year.
Uncertainty is the % standard deviation of daily share returns. Sample covers years 1968±96.

9 This measure of uncertainty is also used by other papers in the literature on uncertainty and
investment, such as Leahy and Whited (1998).

10 For example, Andersen and Bollerslev (1998) use high frequency exchange rate data with 288
recordings per period and calculate that the implied measurement errors are less than 2.5% of the true
volatility.

C104 [ M A R C HT H E E C O N O M I C J O U R N A L

Ó Royal Economic Society 2002



2. Models of Patents and Company Performance

We work with a simple Cobb±Douglas production function of the form

Q � AGaN bK c �1�
where Q is real sales, G is the knowledge stock, N is number of employees, K is the
capital stock and A is an ef®ciency parameter. Taking logs and introducing sub-
scripts for ®rm i at time t we have

log Qit � log Ait � a log Git � b log Nit � c log Kit : �2�
We parameterise ef®ciency, Ait � exp�gi � st � tit�, as a function of ®rm speci®c
®xed effects (gi), time effects (st) and a random stochastic term (tit). In our
empirical application we use patent stocks and citation-weighted patent stocks
(PAT ) as empirical proxies of G , the knowledge stock.

log Qit � a log PATit � b log Nit � c log Kit � gi � st � tit : �3�
We estimate (3) by within groups (least squares dummy variables) correcting the
standard errors for heteroscedasticity.

Market value equations are less well established than production functions.
The standard approach pioneered by Griliches (1981) is based on a speci®ca-
tion of the form (see also Hall et al., 2000; Bosworth, Greenhalgh and Wharton,
2000)

log
V

K

� �
it

� d
G

K

� �
it

�gi � st � tit �4�

where V is the market value of the ®rm. The left hand side of (4) is essen-
tially Tobin's average Q. Hi-tech ®rms with high levels of intangible knowledge
capital will have a larger market value than one would expect from their ®xed
capital stocks.

2.1. Uncertainty and Real Options

The two models laid out above assume that the knowledge contained in patents
can be immediately used and acted on by ®rms. Patents, however, represent
new products or process innovations whose introduction can involve sizeable
investments in additional plant and equipment, hiring and retraining workers,
and advertising and marketing. Much of this expenditure will be irreversible ±
once it is undertaken the initial costs will not be recoverable. Thus, when ®rms
are facing uncertain market conditions then they will possess patent real
options.11 These patent real options re¯ect the value a ®rm places on its ability to
choose the timing of its investment in its patented technologies when this
involves sunk costs.

11 Apart from partial irreversibility and market uncertainty, the third condition for the existence of
real options ± that ®rms can delay their actions ± is clearly satis®ed in this case where patents give ®rms
the exclusive rights to use their innovations until their patents expire.
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A large theoretical literature has grown from the seminal papers of McDonald
and Siegel (1986), Bertola (1988), Pindyck (1988), and Dixit (1989) demon-
strating the important role such real options can play in ®rm's optimal invest-
ment strategies. As a result real options should also play an important role in our
approach to modelling investment in innovation. This work emphasises the role
real options play in retarding the response of ®rms to changing market condi-
tions.12 When market conditions are uncertain ®rms become reluctant to com-
mit large sums to new investment projects or dismantle old investment projects
in case conditions change. This leads to Ôcautionary' investment behaviour. This
Ôcautionary' effect of real options in retarding the response to changing market
conditions has been con®rmed empirically for physical investment by Guiso and
Parigi (1999) in a cross section of Italian ®rms, and by Bloom et al. (2001) in a
panel of UK ®rms.

To incorporate these real options effects we extend the concept of know-
ledge stock into embodied knowledge and disembodied knowledge. Embodied
knowledge represents those product and process innovations which the ®rm
has invested in. Disembodied knowledge, however, represents the remaining
ideas which the ®rm has under patent but has not yet committed into actual
production. When conditions are highly uncertain the ®rm will be more cau-
tious because of the value of the real options associated with embedding new
innovations into production. We develop a stylised model that illustrates the
impact of patenting real options on market values, production and embodi-
ment. This model has been kept deliberately simple to ensure a closed form
analytical solution, but could potentially be extended in a number of direc-
tions.

The ®rm's value is assumed to depend on its collection of embodied patents, Pk ;

k � 1 . . . K ; and disembodied patents Pj ; j � 1 . . . M , where Pk is the pro®t ¯ow
from patent k if embodied. Disembodied patents are those that the ®rm owns the
intellectual property rights to, but would need a sunk cost development of I to
start producing their potential pro®t ¯ows of P . Embodied patents have already
been developed and produce a continuous ¯ow of pro®ts P for the ®rm. Thus, the
®rm's value (VAL) can be written as13

VAL�P1;P2; :::; PK�M � �
XK

k�1

V E �Pk� �
XM
j�1

V D�Pj� �5�

where V E �:� and V D�:� are the values of embodied and disembodied patents.

12 See, for example, the work on threshold behaviour by Dixit and Pindyck (1994), and Bloom
(2000), Abel and Eberly (1996).

13 Of course the ®rm's value should also be a function of a number of other state variables such as its
capital stock, employees, interest rates and other factor prices. However, in order to keep the patent real
options analysis tractable we have ignored these factors, delivering stylised results. A more general
approach which includes other factors is taken by Eberly and Van Mieghem (1997) and Bloom et al.
(2001), which also predicts a similarly strong retardation effect of real options on ®rm responses.
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New patents are assumed to arrive continuously in a stochastic manner. For
simplicity these new patents (and their associated innovations) are assumed to
arrive at an exogenous rate14 with a potential embodied pro®t ¯ow rate of P , which
is initially drawn from a cumulative distribution H �P�. We assume that this initial
distribution of new patents has a large enough support so that some new patents
are so valuable that they are immediately embodied.

For each patent its (potential) embodied pro®t ¯ow evolves stochastically as
market conditions change, and is assumed to follow a geometric Brownian motion
process

dP � lPdt � �rdZk � rF dZF � �6�
where dZi and dZF are independent patent and ®rm level Weiner processes.15

These represent separate patent and ®rm level shocks ± so that, for example,
for a pharmaceutical ®rm patent level shocks would just affect the value of the
particular drug while ®rm level shocks would affect the value of every drug in
its portfolio. Since these two processes are assumed to be independent overall
uncertainty can be written as r2 � �r2

k � r2
F �. The value of patents that are

already embodied can be calculated as V E �P� � P=�qÿ l� where q is the ®rm's
cost of capital and l is the mean growth of patent pro®ts.16 To derive the value
of disembodied patents, which can be thought of as a patent option, we derive
the differential equation describing its value function V D�P�, which comprises
only an expected gain term since there is no pro®t ¯ow for disembodied
patents:

V D�P� � eÿqdtE�V D�P � dp�� �7�

� V D�P� � lV D
P �P�dt � r2

2
V D

PP �P�dt ÿ qV D�P� in lim dt ! 0:

The solution to this takes the form V D�P� � AP b, where A is a constant, and b > 1
is the solution to the characteristic equation.17

Therefore, the ®rm value can also be de®ned to be

VAL�P1;P2; ::PK�M � �
XK

k�1

Pk

qÿ l
�
XM
j�1

APb
j : �8�

Sales are assumed to be representable as a multiple of pro®ts due to markup
pricing, so that we can de®ne some k so that

14 We could allow the arrival rate of new patents to be endogenously determined, for example by
allowing ®rms to vary their R&D spend. However, this would introduce more state and control variables
into the dynamic programme and preclude a straightforward analytical solution.

15 Weiner processes are stochastic white noise processes. This speci®cation allows for patent level and
common ®rm level stochastic shocks. Independence between these two processes considerably
simpli®es the mathematics but is not essential for the results.

16 In fact if patents are (more realistically) modelled as having a ®xed expiring date of T then their
value would be �Pk=�qÿ l���1ÿ eqT �. Since expiry does not change the qualitative implications of our
results we ignore this for analyical simplicity.

17 See McDonald and Siegel (1986) and Dixit and Pindyck (1994) for more details on solving these
option value problems.
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SALES � k
XK

k�1

Pk : �9�

Solving the ®rm's dynamic programme we ®nd that there will exist some value of
embodied pro®t ¯ow P � at which it will become optimal for the ®rm to pay the
sunk embodiment cost I and start receiving this pro®t ¯ow. To solve for this
embodiment value P � we need to derive two optimality conditions. The ®rst is the
value matching condition which requires that at P � the option value just equals the
discounted pro®t ¯ows less the sunk cost of embodiment,

AP �b � P �

qÿ l
ÿ I : �10�

The second condition, known as the smooth pasting condition, takes another
derivative, and ensures embodiment is optimally timed,

bAP �bÿ1 � 1

qÿ l
: �11�

Combining these two conditions allows us to solve for this optimal embodiment
pro®t ¯ow P �

P � � b
bÿ 1

I �qÿ l�: �12�

This demonstrates the option value effect whereby investment in the patent will
only occur after the embodied pro®t ¯ow has risen to b=�bÿ 1� times I �qÿ l�,
compared to the no real option case in which embodiment would occur when
P � � I �qÿ l�, which is the ¯ow cost of embodiment. This option value multiple
b=�bÿ 1� is increasing in r2 so that the embodiment threshold is higher in more
uncertain environments.18

Using this model we can predict the signs of the empirical relationships between
sales, market values, patenting, and uncertainty. First, the ®rm's valuation is clearly
increasing in patent numbers, PAT (which equals K �M in the model above),
since even disembodied patents have an option value. Since market values are
forward looking this effect will take place immediately, so that integrating with
respect to the initial patent valuation we can say the impact patenting effect on
market values will be positive,

@VAL

@PAT
�
Z P �

0
V D�P�dH �P� �

Z 1
P �

V E�P�dH �P� > 0: �13�

Firms' sales will also be increasing, in expectation, in the number of patents
since some new patents will have a suf®ciently high initial value that will be
embodied immediately. Given the embodiment threshold P � and assumption on
the distribution of initial values H �x�, the impact value of new patents on sales
will be

18 See McDonald and Siegel (1986) or Dixit and Pindyck (1994).
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@SALES

@PAT
� 1ÿH �P �� > 0: �14�

The ®rst order derivative of market value with respect to uncertainty will also be
positive since higher uncertainty will increase the option value of disembodied
patents19

@VAL

@r2
�
XN
i�1

@V �Pi�
@r2

> 0: �15�

The ®rst order derivative of sales with respect to uncertainty depends on the extent
to which additional patents are embodied. These effects can be ambiguous. On the
one hand higher uncertainty increases the embodiment threshold P �, which will
directly reduce the rate of patent embodiment. On the other hand, higher un-
certainty will make the potential embodied pro®t ¯ows P more volatile, and so
increase the chance that any patent actually hits its embodiment threshold.
Overall, as Abel and Eberly (1999) show in a related physical investment model,
these effects can go in either direction:

@SALES

@r2
7 0: �16�

Finally we are also interested in the cross derivative of new patenting and uncer-
tainty. The cross derivative for market value is again positive since higher uncer-
tainty will increase the value of extra patents. This impact will be felt immediately
since market values are forward looking, so that

@2VAL

@PAT@r2
> 0: �17�

The cross derivative of sales with respect to patenting and uncertainty will be
negative because of the real options effect on embodiment. Higher uncertainty
will raise the embodiment threshold P � which will reduce the fraction of new
patents that are immediately embodied. Taking the ®rst derivative of equation
(14) with respect to uncertainty we can show this will be negative

@2SALES

@r2@PAT
� ÿh�P �� dP �

@r2
< 0 �18�

where h�P �� is the probability distribution derived from H �P�.
This stylised model focuses only on patents as a driver for productivity, but our

empirical speci®cation allows, of course, for an independent role for the other
factors of production. We assume that the augmented Cobb±Douglas production
function can take the form:

logQit � a logPATit �b logNit � c logKit �wri�v�ri � logPATit��gi� st � tit �19�
where the coef®cients w and v will pick up the direct and interaction effects
of uncertainty. The coef®cient w is theoretically ambiguous in sign while the

19 Of course in a more general model we could allow the ®rm's discount rate to vary with the level of
uncertainty, which could lead higher uncertainty to reduce market values if most patents were already
embodied.
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interaction coef®cient v is predicted to be negative. Note that we will not be able to
identify the linear effect of uncertainty from gi separately in the speci®cations
where the latter are treated as ®xed effects.

In our empirical market value equation shown below, which includes uncer-
tainty interactions, real options theory predicts positive coef®cients h and f on
linear uncertainty and the interaction term.

log
V

K

� �
it

� d
G

K

� �
it

�hri � f ri � log
G

K

� �
it

� �
� ~gi � est � etit : �20�

3. Results

Table 5 presents the results of estimating a standard production function on our
sample of ®rms. Column (1) has the OLS estimates of the production function for
our complete population of over 2,000 Datastream ®rms. As expected the coef®-
cients on capital and labour are both positive and signi®cant at conventional levels,
and their sum is close to unity (suggesting constant returns in tangible factors). In
column (2) we undertake estimation with our preferred within groups estimator
which controls for time invariant differences between ®rms by including ®rm
dummies. Again the coef®cients on capital and labour are positive and signi®cant,
although slightly smaller than in column (1). Column (3) compares these within
groups results from the whole Datastream sample to our sub-sample of patenters.
The higher point estimates on capital and lower point estimates on labour imply

Table 5

Basic Production Functions

Log Real Sales (1) (2) (3) (4) (5) (6) (7)

Firms All All ÐÐÐÐÐÐ- Patenters Only ÐÐÐÐÐÐ
Log Capital 0.330��� 0.287��� 0.433��� 0.435��� 0.463��� 0.467��� 0.463���

(0.006) (0.010) (0.027) (0.027) (0.031) (0.031) (0.031)
Log Employment 0.649��� 0.605��� 0.550��� 0.546��� 0.496��� 0.493��� 0.496���

(0.006) (0.010) (0.027) (0.027) (0.031) (0.031) (0.031)
Log Patent stock 0.027��� )0.009

(0.008) (0.019)
Log Cite stock 0.031��� 0.038��

(0.008) (0.016)
Log 5 Year 0.032���
Cite Stock (0.007)

Firm dummies no yes yes yes yes yes yes
Time dummies yes yes yes yes yes yes yes
Adj. R-Squared 0.901 0.989 0.992 0.992 0.992 0.992 0.992
No. observations 18,007 18,007 2,222 2,222 1,900 1,900 1,900
No. ®rms 1,725 1,725 178 178 165 165 165

Notes: The dependent variable is `log real sales'. Columns (1) and (2) present results using our complete
Datastream population of all ®rms, Columns (3) to (7) present the results for our sub-sample of ®rms with
patents. The estimation period covers 1968 until 1993 inclusive for columns (1) to (4), and 1968 until 1990
inclusive for columns (4) to (7) which use the citation data. The symbol ��� denotes 1% signi®cance,
�� denotes 5% signi®cance and � denotes 10% signi®cance. Standard errors are robust to arbitrary
heteroscedasticity.
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that our sample of patenting ®rms are on average more capital intensive than
lower tech ®rms (as one would expect). In fact our patenting ®rms have on average
a 20% higher capital to labour ratio than non patenting ®rms.

The last four columns of Table 5 report the results from including patents as a
proxy for knowledge in the production function. In column (4) we use patent
stocks, in column (5) citation weighted patent stocks and in column (6) the ®ve
year ahead citation weighted patent stock measure.20 On all the alternative
measures, patent stocks are signi®cant at the 0.05 level with an elasticity of about
0.03. This suggests that a doubling of the patents stock would lead to a 3% increase
in total factor productivity.21 In column (7) we include both the patent stock and
the citation knowledge stock and ®nd that patents are no longer signi®cant. Thus,
citations provide signi®cant information over and above raw patents numbers. This
suggests citations could provide a valuable proxy for evaluating knowledge stocks
and tracing knowledge ¯ows.

Table 6 reports the results of estimating the impact of patents on market values
using the conventional average Q speci®cation described in (4). In column (1) we
use the patent stock measure, in column (2) our citation weighted patents stock
measure, and in column (3) the ®ve year ahead measure and ®nd all three have
signi®cant explanatory power at the 5% level. The coef®cient in column (2)
suggests, for example, that doubling the citation weighted patents stock would
increase the value of ®rms per unit of capital by about 35%. This large estimate of

Table 6

Market Value with Patents Measures

log �Vi;t=Ki;tÿ1� (1) (2) (3) (4) (5)

Patent Stock/Capital 1.221�� )0.533 1.002��
(0.492) (0.755) (0.492)

Cite Stock/Capital 0.345���
(0.140)

5 Year Cite Stock/Capital 0.435�� 0.443��
(0.206) (0.228)

Cite Stock/Patent Stock 0.015
(ave. cite per patent) (0.010)

Firm dummies yes yes yes yes yes
Time dummies yes yes yes yes yes
No. observations 2,138 1,821 1,821 1,821 1,821
No. ®rms 172 158 158 158 158

Notes: The dependent variable is Ôlog (market value/lagged capital)Õ. Due to the need for a lagged
capital observation the estimation period covers 1969 until 1994 inclusive for column (1), and 1969
until 1990 inclusive for columns (2) to (4) (which use the citation data which are only available for this
shorter period). The symbol ��� denotes 1% signi®cance, �� denotes 5% signi®cance and � denotes 10%
signi®cance. Standard errors are corrected for arbitrary heteroscedasticity.

20 We also re-estimate this equation using the wage bill rather than employment as the labour variable
to re¯ect potential skills differentials across employers. This yields extremely similar results with a
slightly higher and still 1% signi®cant patent citation point estimate of 0.0329 (0.0076) for the
speci®cation in column (5).

21 We are grateful to a referee for pointing out that what we in fact measure is revenue productivity
which includes both changes in factor productivity as well as any increase in the markup ®rms are able
to charge consumers from new innovations.
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the effect of cited patents on market values captures the market's expectation of
the total discounted rents from patented innovations.22 In column (4) we again
compare the predictive power of patents and citation weighted patents and ®nd
that citations provide signi®cant additional information over and above raw pa-
tents counts. Column (5) follows Hall et al. (2000) by decomposing the citation
weighted patent stock into a patent stock measure and an average cites per patent
stock measure. It can be seen that the raw patent count provides the bulk of the
information with the average cite per patent measure positive but signi®cant only
at the 15% level.

In Table 7 we conduct some robustness tests on our basic models. In columns
(1) and (2) we include both the patent stock and the lagged patent stocks
measures. It is the lagged variable which is most informative in predicting
productivity, suggesting that patented innovations take some time to enter the
production function. In the market value equation, however, the current value
of patents per unit capital has the larger coef®cient (1.173) and is signi®cant at
the 15% level, while the lagged value has a coef®cient of 0.656 and is not
signi®cant at all.23 This larger point estimate on the current value in the market
value equation appears to re¯ect the forward looking nature of the market value
measure. In columns (3) and (4) we lag all our right hand side variables one
period to control for the possible endogeneity of current values of the ex-
planatory variables. This does not noticeably change our results with signi®cant
effects of patents on productivity and market values. We also re-run this speci-
®cation with all our explanatory variables lagged twice and again ®nd our results
look very similar with a point estimate (standard error) of 0.042 (0.013) on
patents in the productivity equation and of 1.01 (0.405) on (patents/capital) in
the market value equation.24 We also look for both structural breaks and a time
varying coef®cient on our patent measures, and somewhat surprisingly, ®nd no
signi®cant evidence for either.

Finally, Table 8 reports our results from investigating the effects of uncertainty
on the productivity response to patenting. In column (1) the patenting uncer-
tainty interaction term takes the predicted negative sign in our productivity
equation, and is signi®cant at the 5% level. The coef®cient on the level of un-

22 These results are larger than those reported for US ®rms by Hall et al. (2000) where they report
coef®cients of 0.607 and 0.108 on (patent/capital stock) and (cite patent/capital stock). One reason
could be that the Hall et al. (2000) study uses a different sample with a higher weighting in smaller
NASDAQ ®rms. Another reason appears to be because they chose a 15% rather than a 30% depreciation
rate on patents so that their patenting and citation stocks will be approximately twice our size. Our
results are robust to using this alternative assumption on the knowledge depreciation rate. For example,
if we use a 15% rather than a 30% depreciation rate and re-estimate our market value equations we
obtain a coef®cient (standard error) of 0.879 (0.327) and 0.246 (0.081) on the (patent stock/capital
stock) and (citation stock/capital stock) terms respectively. In our productivity equations we obtain a
coef®cient (standard error) of 0.035 (0.013) and 0.028 (0.010) on our patent stock and citation stock
measures respectively.

23 Although individually insigni®cant, the current and lagged values are jointly signi®cant at the 1%
level.

24 Because of the limited cross-sectional size of our dataset the standard GMM estimators would not
be appropriate. However, we did undertake some exploratory IV estimations using orthogonal
deviations which yielded approximately similar point estimates but with much larger standard errors
(see Bloom and Van Reenen (2001) for details).
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certainty (ri), which is theoretically ambiguous, is also negative but not signi®-
cant at the 5% level. When we move to the within groups speci®cation in column
(2) by including a full set of ®rm dummies we have to drop this ®rm speci®c
uncertainty term ri since this is collinear with the ®rm dummies. In column (2)
we see that the patenting interaction term is, as before, negative and signi®cant
at the 1% level. The size of this interaction coef®cient �ÿ0:01� suggests that
increasing a ®rm's uncertainty by one standard deviation (0.42) from the median
level of uncertainty (1.39) would reduce the elasticity of productivity with respect
to patents from 0.024 to 0.020. Hence, for a one standard deviation increase in
uncertainty the patenting effect on productivity falls by about 20%, a moderate
but not enormous change.

In column (3) we investigate the levels and interaction effects of uncertainty on
the market value in an OLS equation. We ®nd that both the direct effect and the
interaction effect have a negative impact on market values. This is in contradiction
to our theory which predicts a positive relationship, suggesting that uncertainty
may play a more powerful negative role through some other channel such as the
cost of capital. The study by Griliches et al. (1988) ®nds, in fact, that while patents
are signi®cant in determining market values they account for only about 5% of
their variance. In contrast variation in the cost of capital will probably account for a

Table 7

Robustness Checks

(1) (2) (3) (4)

Real Sales log �Vi;t=Ki;tÿ1� Real Sales log �Vi;t=Ki;tÿ1�
Log Real Capital 0.463���

(0.028)
Lagged Log Real Capital 0.439���

(0.031)
Log Employment 0.531���

(0.028)
Lagged Log Employment 0.447���

(0.030)
Log Patent Stock )0.006

(0.011)
Lagged log Patent Stock 0.030�� 0.040���

(0.010) (0.010)
Patent Stock/Capital 1.173

(0.787)
Lagged Patent Stock/Capital 0.656 1.369���

(0.721) (0.529)

Firm dummies yes yes yes yes
Time dummies yes yes yes yes
No. observations 2,055 1,975 2,055 1,975
No. ®rms 175 169 170 169

Notes: The dependent variable for columns (1) and (3) is `log real sales' and the dependent variable for
columns (2) and (4) is `log (market value/capital stock)' ± both are in 1985 prices. The estimation
period covers 1968 until 1990 inclusive for columns (1) and (3), and 1969 until 1990 inclusive for (2)
and (4). The symbol ��� denotes 1% signi®cance, �� denotes 5% signi®cance and � denotes 10%
signi®cance. Standard errors are corrected for arbitrary heteroscedasticity.
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much larger share of the variation in market value.25 In column (4) we include a
full set of ®rm dummies to control for ®xed differences between ®rms, and the
uncertainty±patenting interaction term remains negative but is insigni®cant at
conventional levels.

To account for the possible effects of market-wide bubbles and fads we also
calculate a second measure of uncertainty, using the variance of the ®rm's daily
share returns normalised by the return on the FTSE All-Share index. This measure
eliminates common stock market volatility. Results using this normalised measure
are almost identical to those reported in Table 8, and are available on request from
the authors.

4. Conclusions

Patents citations are a potentially powerful indicator of technological innovation.
Our analysis of the new IFS-Leverhulme database on over 200 major British ®rms
since 1968 has uncovered some interesting results. First, we show that patents have
had an economically and statistically signi®cant impact on ®rm-level productivity

Table 8

Real Options Effects of Uncertainty

(1) (2) (3) (4)

Real Sales Real Sales log �Vi;t=Ki;tÿ1� log �Vi;t=Ki;tÿ1�
Log Real Capital 0.457��� 0.451���

(0.015) (0.021)
Log Employment 0.511��� 0.541���

(0.017) (0.017)
Log Patent Stock 0.024�� 0.040���

(0.011) (0.008)
ri ´ Log Patent Stock )0.015�� )0.010���

(0.006) (0.003)
Patent Stock/Capital 0.930��� 1.436���

(0.331) (0.417)
ri ´ Patent Stock/Capital )0.279� )0.123

(0.156) (0.126)
ri )0.036 )0.319���

(0.024) (0.047)

Firm dummies no yes no yes
Time dummies yes yes yes yes
No. observations 2,121 2,121 2,121 2,121
No. ®rms 171 171 171 171

Notes: The dependent variable for the ®rst two columns is `log real sales' and the dependent variable for
the second two columns is Ôlog real market valueÕ ± both are in 1985 prices. The estimation period covers
1970 until 1993 inclusive. The symbol ��� denotes 1% signi®cance, �� denotes 5% signi®cance and
� denotes 10% signi®cance. Standard errors corrected for arbitrary heteroscedasticity.

25 Strictly speaking the relationship between uncertainty and capital valuation implied by theories
such as the Capital Asset Pricing Model (CAPM) or the Consumption CAPM relies on covariance (with
the market) rather than variance. Since covariances and variances are likely to be positively linked,
however, this negative statistical relationship between variance and capital valuation is not surprising.
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and market value. For example, a doubling of the citation-weighted patent stock
increases total factor productivity by 3%. We ®nd that citations are more inform-
ative than the simple patent counts that have been used previously in the litera-
ture. Secondly, we ®nd that while patenting feeds into market values immediately
it appears to have a slower effect on productivity. Thirdly, we ®nd that higher
market uncertainty reduces the impact of new patents on productivity. This is
consistent with a simple Ôreal options' effect that has been found to be important
in the literature on tangible investment.

There are several future directions to take this stream of research. We have not
investigated the technological spillovers that have been a focus of attention in the
recent literature. Patent citations are a potentially useful source of information in
tracking the ¯ows of knowledge across industries and countries and we intend to
use the citations data in combination with R&D to investigate spillovers. A second
area of interest is in probing the uncertainty results in more detail. If more
uncertain environments reduce the productivity bene®ts from patents then it is
likely that reductions in uncertainty will imply a larger effect on ®rms' incentives to
innovate. A natural extension of this work is to augment the patenting equations
with measures of uncertainty to uncover the importance of volatility in affecting
innovation. Finally, the results presented here imply that the Government's
attempts to reduce uncertainty (if they work in lowering Ôboom and bust') will have
a direct effect on productivity through increasing the productivity impact of
Britain's knowledge capital as measured by citation weighted patents.

Institute for Fiscal Studies
Institute for Fiscal Studies and University College London
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